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Abstract
Consider in L2(Rd), d � 1, the operator family H(g) := H0 + igW . H0 =
a∗

1a1 + · · · + a∗
dad + d/2 is the quantum harmonic oscillator with rational

frequencies, W is a P symmetric bounded potential, and g is a real coupling
constant. We show that if |g| < ρ, ρ being an explicitly determined constant,
the spectrum of H(g) is real and discrete. Moreover we show that the
operator H(g) = a∗

1a1 + a∗
2a2 + iga∗

2a1 has a real discrete spectrum but is
not diagonalizable.

PACS numbers: 03.65.−w, 02.30.Tb

1. Introduction

A basic fact underlying the PT -symmetric quantum mechanics (see e.g. [1–10]) is the
existence of non-self-adjoint, and not even normal, but PT -symmetric Schrödinger, operators
(a particular case of complex symmetric operators, as remarked in [11]) which have a fully real
spectrum. In d � 1 degrees of freedom we assign to P its most general mathematical meaning,
namely the reflection with respect to any subset of the coordinates x1, . . . , xd ; T is the complex
conjugation. When all d coordinates are reflected, as in the potential W(x) considered below,
the standard parity operation Pψ(x1, . . . , xn) = ψ(−x1, . . . ,−xn) is recovered.

Two natural mathematical questions arising in this context are (i) the determination of
conditions under which PT -symmetry actually yields a real spectrum (for results in this
direction see, e.g. [12–16]) and (ii) the examination of whether or not this phenomenon can
still be understood in terms of self-adjoint spectral theory; for example, it has been remarked
that if a PT -symmetric Schrödinger operator with a real spectrum is diagonalizable, then it
is conjugate to a self-adjoint operator through a similarity map (see, e.g. [17–19]). Hence the
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question arises whether PT -symmetric Schrödinger-type operators with a real spectrum are
always diagonalizable (see, e.g. [20–22]).

In this paper a contribution is given to both questions. First, we solve in the negative
the second one. Namely, we give a very simple, explicit example of a PT symmetric
operator, with a purely real and discrete spectrum, which cannot be diagonalized because of
occurrence of Jordan blocks (see also [24, 25] for the general framework in terms of complex
symmetric operators). The example, which also represents an explicit realization of a block
diagonalizable non-self-adjoint operator in the sense of [20] (see also [23]), is the following
Schrödinger operator, acting on a domain D(H(g)) ⊂ L2(R2) to be specified later:

H(g) := a∗
1a1 + a∗

2a2 + iga∗
2a1 + 1, g ∈ R. (1.1)

Here ai, a
∗
i , i = 1, 2 are the standard destruction and creation operators of two independent

harmonic oscillators:

ai = 1√
2

(
xi +

d

dxi

)
, a∗

i = 1√
2

(
xi − d

dxi

)
, (1.2)

so that (1.1) can be rewritten under the form

H(g) = 1

2

[
− d2

dx2
1

+ x2
1

]
+

1

2

[
− d2

dx2
2

+ x2
2

]
+ ig

1

2

(
x2 − d

dx2

)(
x1 +

d

dx1

)
(1.3)

which is manifestly invariant under the PT -operation x2 → −x2, ig → −ig.
Second, we identify a new class of non-self-adjoint, PT -symmetric operators with a

purely real spectrum in L2(Rd), d > 1. To our knowledge, this is the first example of such
operators in dimension higher than one (a preliminary version of this result, without proofs,
already appeared in [26]). An example of an operator belonging to this class is represented
by a perturbation of the harmonic oscillators in dimensions higher than one, namely by the
following Schrödinger operators:

H(g) = 1

2

d∑
k=1

[
− d2

dx2
k

+ ω2
kx

2
k

]
+ igW(x1, . . . , xd). (1.4)

Here W ∈ L∞(Rd; R),W(−x1, . . . ,−xd) = −W(x1, . . . , xd), |g| < ρ, where ρ > 0 is an
explicitly estimated positive constant, and the frequencies ωk > 0 are rational multiples of a
fixed frequency ω > 0: ωk = pk

qk
ω. Here pk ∈ N, qk ∈ N : k = 1, . . . , d is a pair of relatively

prime numbers, with both pk and qk odd, k = 1, . . . , n. When d = 2, ω1
ω2

= p

q
, this result can

be strengthened: if ω1/ω2 = p/q, the spectrum is real if and only if p and q are both odd.
The paper is organized as follows: in the next section we work out the example

(1.1) making use of the Bargmann representation, in section 3 we establish the class of
PT -symmetric operators with a real spectrum by exploiting the real nature of Rayleigh–
Schrödinger perturbation theory (for related work on the spectrum of PT -symmetric operators
through perturbation theory, see [28, 29]), and in section 4 we work out the example represented
by the perturbation of the resonant harmonic oscillators proving the above statements.

2. A non-diagonalizable PT symmetric operator with a real discrete spectrum

Consider the operator H(g) whose action on its domain is specified by (1.1) or, equivalently,
(1.3). Denote H0 the operator corresponding to the two-dimensional harmonic oscillator,
namely,

H0 := 1

2

[
− d2

dx2
1

+ x2
1

]
+

1

2

[
− d2

dx2
2

+ x2
2

]
, D(H0) = D(−�) ∩ D

(
x2

1 + x2
2

)
. (2.1)



PT symmetric non-self-adjoint operators with a real discrete spectrum 10157

It is immediately verified that V u := a∗
2a1u ∈ L2 if u ∈ D(H0). Therefore we can give the

following definition.

Definition 2.1. The operator family H(g) : g ∈ R in L2(R2) is the operator H(g) whose
action is H0 + igV on the domain D(H0).

Then we have the following theorem.

Theorem 2.2. Consider the operator family H(g) defined above. Then, ∀ g ∈ R, |g| < 2:

(1) H(g) has a discrete spectrum.
(2) All eigenvalues of H(g) are λm = m + 1,m = 0, 1, 2, . . . . Each eigenvalue λm has

geometric multiplicity 1 but algebraic multiplicity m + 1.

More precisely, for each m there is an m-dimensional subspace Hm invariant under H(g) such
that we have the orthogonal decomposition L2 = ⊕∞

m=0 Hm; if we denote H̃m := H(g)|Hm

the restriction of H(g) to Hm, then H(g) = ⊕∞
m=0 H̃m and H̃m is represented by the

(m + 1) × (m + 1) matrix:

H̃m = (m + 1)I(m+1)×(m+1) + igDm. (2.2)

Here Dm is a nilpotent of order m + 1. Explicitly,

Dm :=



0
√

m 0 · · 0
0 0

√
2(m − 1) 0 · 0

0 0 0
√

3(m − 2) · ·
· · · · · ·
· · · · · √

m

0 0 · · · 0


	⇒ Dm+1

m = 0. (2.3)

Remark

(1) Spec(H(g)) is thus real and independent of g.
(2) Formula (2.2) is the Jordan canonical form of H̃m. The algebraic multiplicity is m + 1.

Since Dm �= 0, H̃m is not diagonalizable by definition and, a fortiori, neither is H(g).

Proof of Assertion 1
The classical Hamiltonians corresponding to the operators H0 and H(g) represent their

symbols, denoted σ0(x, ξ) and σg(x, ξ), respectively,

σ0(x, ξ) = 1
2

(
ξ 2

1 + ξ 2
2 + x2

1 + x2
2

)
, (2.4)

σg(x, ξ) = σ0(x, ξ) + igσ̃ (x, ξ), σ̃ (x, ξ) := 1
2 (x2 − iξ2)(x1 + iξ1). (2.5)

We have indeed (formally) σ0(x,−i∇x) = H0, σg(x,−i∇x) = H(g). Since σ0 → +∞ as
|ξ | + |x| → +∞, by well-known results (see, e.g., section 13.14 of [30]) it is enough to prove
that ∀ |g| < g∗ = 2, and ∀ (x, ξ) outside some fixed ball centered in the origin of R

4:

0 <
(
1 − 1

2 |g|)σ0(x, ξ) � |σg(x, ξ)|. (2.6)

To see this, we estimate

|σ̃ | � 1
2 |x2 − iξ2||x1 + iξ1| � 1

4 (|x2 − iξ2|2 + |x1 + iξ1|2) = 1
2σ0,

and hence

|σg| � |σ0| − |g||σ̃ | �
(

1 − |g|
2

)
σ0.

This proves the inequality and hence the assertion. �
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To prove the remaining assertions of the theorem we make use of the Bargmann representation
[27]. To this end, recall the general definition of the Bargmann transform UB (even though
we shall need it only for d = 2):

(UBu)(z) := f (z) = 1

πd/4

∫
Rd

e− 1
2 (z2−2

√
2〈z,q〉+q2)u(q) dq, z ∈ C

d . (2.7)

Let us recall the relevant properties of the Bargmann transformation.

(1) UB is a unitary map between L2(Rd) and F = Fd , the space of all entire holomorphic
functions f (z) : C

d → C such that (here z = x + iy):

‖f (z)‖2
F := π−d

∫
R2d

|f (z)|2e−|z|2 dx dy = 〈f, f 〉F < +∞, (2.8)

where the scalar product 〈f, g〉F in Fd is defined by

〈f, g〉F = π−d

∫
R2d

f (z)g(z) e−|z|2 dx dy. (2.9)

Namely, with f (z) := (UBu)(z): ‖f (z)‖F = ‖u(q)‖L2(Rd ).
(2) Let a∗

i , ai be the destruction and creation operators in the variable xi defined as in
(1.2). Let Ni := a∗

i ai be the corresponding number operator, i = 1, . . . , d. Denote
N(d) := ∑d

i=1 Ni the total number operator. Then we have

UBa∗
i U

−1
B = zi, UBaiU

−1
B = ∂

∂zi

, UBN(d)dU−1
B =

d∑
i=1

zi

∂

∂zi

(2.10)

so that H0 = N(2) + 1. The above operators are defined in their maximal domain in Fd .
Moreover,

Q(g) := UB(H(g) − 1)U−1
B = UB(N(2) + iga∗

2a1)U
−1
B

= z1
∂

∂z1
+ z2

∂

∂z2
+ igz2

∂

∂z1
:= Q0 + igW (2.11)

defined on the maximal domain. Remark that Spec(Q0) = {0, 1, . . . , m, . . .}. The
eigenvalue λm = m has multiplicity m + 1.

(3) Let ψk(x) be the normalized eigenvectors of the one-dimensional harmonic oscillator in
L2(R). Then,

(UBψk)(z) := ek(z) = 1√
π1/2k!

zk, k = 0, 1, . . . . (2.12)

Let now m = 0, 1, 2, . . .. Define

fm,h(z1, z2) := em−h(z2)eh(z1), h = 0, . . . , m;
Km := Span{fm,h : h = 0, . . . , m}

= Span{el1(z2)el2(z1) : l1 + l2 = m}.
Hence the following properties are immediately checked:

dimKm = m + 1; Km ⊥ Kl , m �= l;
∞⊕

m=0

Km = F2. (2.13)

We then have the following lemma.
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Lemma 2.3

(1) For any m = 0, 1, . . . and h = 0, . . . , m,

Q(g)fm,h = mfm,h + ig
√

h(m − h + 1)fm,h−1, fm,−1 := 0. (2.14)

(2) Let 
m be the orthogonal projection from F2 onto Km. Then, [
m,Q(g)] = 0;
equivalently, Km reduces Q(g): Q(g)Km ⊂ Km.

(3) Let Q(g)m := Q(g)|Km
= 
mQ(g)
m = 
mQ(g) = Q(g)
m be Km-component of

Q(g). Then Q(g) = ⊕∞
m=0 Q(g)m.

Proof

(1) Just compute the action of Q(g) on fm,h:

Q(g)fm,h =
(

z1
∂

∂z1
+ z2

∂

∂z2
+ igz2

∂

∂z1

)
em−h(z2)eh(z1)

= (m − h)em−h(z2)eh(z1) + hem−h(z2)eh(z1)

+ ig
√

h(m − h + 1)em−(h−1)(z2)eh−1(z1)

= mfm,h + ig
√

h(m − h + 1)fm,h−1. (2.15)

(2) Since the vectors fm,h : h = 0, . . . , m span Km, by linearity the above formula entails
Q(g)Km ⊂ Km.

(3) The assertion follows from (2) above and the completeness relation (2.13). �

Proof of theorem 2.2. We have to prove assertion 2.
2. Making h = 0 in (2.15) we get

Q(g)fm,0 = mfm,0, m = 0, 1, . . .

Hence λ′
m = m is an eigenvalue of Q(g) with the eigenvector fm,0, i.e. with geometric

multiplicity one. By the unitary equivalence H(g) = U−1
B (Q(g) + 1)UB we conclude that

λm = m + 1,m = 0, . . . , is an eigenvalue of H(g) of geometric multiplicity one, with the
eigenvector U−1

B fm,0 = ψm(x1)ψ0(x2). From (2.14) we read off the matrix representation
(2.2), (2.3) and we get the statement about the algebraic multiplicity. On account of the unitary
equivalence Hm = U−1

B Km this concludes the proof of the theorem. �

3. A class of non-self-adjoint PT symmetric operators with real discrete spectrum

Let H0 be a self-adjoint operator in L2(Rd), d � 1, bounded below (without loss of generality,
positive) with compact resolvent, and let D(H0) denote its domain. Let P be the parity
operator in L2(Rd) defined by

(Pψ)(x) = ψ(−x), ∀ ψ ∈ L2(Rd), ∀ x ∈ R
d . (3.1)

Let us assume that H0 is P-symmetric, i.e.

PHψ = HPψ, ∀ ψ ∈ D(H0) (3.2)

and also T -symmetric, i.e.

(H0ψ)(x) = (H0ψ)(x), ∀ ψ ∈ D(H0), ∀ x ∈ R
d . (3.3)

Let 0 < �1 < �2 < · · · be the increasing sequence of the eigenvalues of H0. Let mr denote
the multiplicity of �r and ψr,s, s = 1, . . . , mr , denote mr linearly independent eigenfunctions
corresponding to �r , which form a basis of the eigenspace

Mr := Span{ψr,s : s = 1, . . . , mr} (3.4)

corresponding to �r .
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Definition 3.1

(1) An eigenspace Mr is even (odd) if all basis vectors {ψr,s : s = 1, . . . , mr} are even (odd);
i.e., if Pψr,s = ψr,s,∀ s = 1, . . . , mr (Pψr,s = −ψr,s,∀ s = 1, . . . , mr).

(2) An eigenvalue �r is even (odd) if the corresponding eigenspace Mr is even (odd).

Now, let W ∈ L∞(Rd) be an odd real function, i.e. W(x) = −W(−x),∀ x ∈ R
d . Let

V := iW ; clearly V is PT - even, i.e.

V (−x) = V (x), ∀ x ∈ R
d . (3.5)

Then, ∀ g ∈ C, the operator H(g) := H0 + gV defined on D(H(g)) = D(H0) by

H(g)ψ = H0ψ + gV ψ, ∀ ψ ∈ D(H0) (3.6)

is closed. More precisely H(g) represents an analytic family of type A of closed operators in
the sense of Kato (chapter 7.2 of [31]) for g ∈ C, with compact resolvents. Thus Spec(H(g))

is discrete for all g. For g ∈ R the operator H(g) is PT -symmetric, i.e.

PH(g)ψ(x) = H(g)ψ(−x), ∀ ψ ∈ D(H0). (3.7)

Moreover,

H(g)∗ = H(−g). (3.8)

We want to prove the following result.

Theorem 3.2. Let H0 and W enjoy the above listed properties. Assume furthermore that

(1) δ := 1
2 infr (�r+1 − �r) > 0.

(2) Each eigenvalue �r : r = 1, . . . , is either even or odd.

Then if |g| < δ
‖W‖∞

each eigenvalue λ(g) of H(g) is real, and thus the spectrum of H(g) is
purely real.

Example. The d-dimensional harmonic oscillator with equal frequencies

H0 = 1

2

d∑
k=1

[
− d2

dx2
k

+ ω2x2
k

]
(3.9)

has the properties required by H0. In this case indeed

�r = ω(r1 + · · · + rd + d/2) := ω(r + d/2), rk = 0, 1, 2, . . . ; k = 1, . . . , d

with multiplicity mr = (r + 1)d . Here the corresponding eigenspace is

Mr := Span{ψr,s : s = 1, . . . , mr} = Span{ψr1(x1) · · · ψrd
(xd) : r1 + · · · + rd = r}

where, as above, ψr(x) is a Hermite function. Now if r is odd the sum r = r1 + · · · + rd

contains an odd number of odd terms; since ψs(x) is an odd function when s is odd, the
product ψr1(x1) · · · ψrd

(xd) contains an odd number of odd factors and is therefore odd. �r

is therefore an odd eigenvalue. An analogous argument shows that �r is an even eigenvalue
when r is even. Moreover, �r+1 − �r = ω and thus condition (1.1) above is fulfilled.

Actually, the above example is a particular case of a more general statement, while for
d = 2 the above application to the perturbation of harmonic oscillators can be considerably
strengthened.

Theorem 3.3. Let

H0 = 1

2

d∑
k=1

[
− d2

dx2
k

+ ω2
kx

2
k

]
. (3.10)
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Assume the frequencies to be rational multiples of a fixed frequency ω > 0, namely,

ωk = pk

qk

ω, k = 1, . . . , d, (3.11)

where (pk, qk) are relatively prime natural numbers. Then assumption (1) of theorem 3.2
holds. Moreover,

(i) If pk and qk are both odd, k = 1, . . . , d, assumption (2) of theorem 3.2 is fulfilled.
(ii) If d = 2, the condition pk and qk both odd is also necessary for the validity of assumption

(1.2) of theorem 3.2.

We will now prove theorem 3.2 in two steps (propositions 3.5 and 3.10), while the proof of
theorem 3.3 is postponed to the next section. In the first step we show that the degenerate
Rayleigh–Schrödinger perturbation theory near each eigenvalue �r is real and convergent,
with a convergence radius independent of r. Thus there exists ρ > 0 such that all the mr

eigenvalues near �r (counted according to their multiplicity) existing for |g| < ρ are real for
all r. The second step is the proof that H(g) admits no other eigenvalue for |g| < ρ. To
formulate the first step, we recall some relevant notions and results of perturbation theory.

Let g0 ∈ C be fixed and let µ be an eigenvalue of H(g0). Let c > 0 be sufficiently small
so that

c = {z : |z − µ| = c}
encloses no other eigenvalue of H(g0). Then for |g−g0| small c is contained in the resolvent
set of H(g), ρ(H(g)) := C \Spec(H(g)). Moreover c ⊂ D, where

D := {z ∈ C : ∃b(z) > 0 such that (z − H(g))−1 := Rg(z)

exists and is uniformly bounded for |g − g0| < b(z)}.
Then for |g − g0| sufficiently small

P(g) = (2π i)−1
∮

c

Rg(z) dz (3.12)

is the projection corresponding to the part of the spectrum of H(g) enclosed in c and ∀ z ∈ D

‖Rg(z) − Rg0(z)‖ → 0, as g → g0 (3.13)

whence

‖P(g) − P(g0)‖ → 0, as g → g0 (3.14)

(see e.g., section 7.1 of [31]). In particular, if m denotes the multiplicity of µ, for g

close to g0,H(g) has exactly m eigenvalues (counting multiplicity) inside c, denoted
µs(g), s = 1, . . . , m, which converge to µ as g → g0. If we denote by M(g) the range
of the projection operator P(g), then dimM(g) = m as g → g0, and H(g)M(g) ⊂ M(g).
Hence the component P(g)H(g)P (g) = P(g)H(g) = H(g)P (g) of H(g) in M(g) has rank
m and its eigenvalues are precisely µs(g), s = 1, . . . , m.

Assume from now on g0 = 0 so that the unperturbed operator is the self-adjoint operator
H0 := H(0). Let � = �r , r = 1, 2, . . . , be a fixed eigenvalue of H0,m = mr its multiplicity
and ψs := ψr,s : s = 1, . . . , m be an orthonormal basis in Mr := Mr (0). Then there is
ḡ(r) > 0 such that the vectors Pr(g)ψr,s : s = 1, . . . , m are a basis in the invariant subspace
Mr (g) for |g| < ḡ(r). We denote φr,s(g) : s = 1, . . . , m the orthonormal basis in Mr (g)

obtained from Pr(g)ψr,s : s = 1, . . . , mr through the Gram–Schmidt orthogonalization



10162 E Caliceti et al

procedure. Then the eigenvalues µs(g) = �r,s(g), s = 1, . . . , mr , are the eigenvalues of
the mr × mr matrix Tr(g) given by

(Tr(g))hk := 〈φr,h(g),H(g)P (g)φr,k(g)〉
= 〈φr,h(g), Pr(g)H(g)Pr(g)φr,k(g)〉, h, k = 1, . . . , mr .

Let φr,s(g) = ∑m
j=1 αr

sj (g)Pr(g)ψr,j , α
r
sj (g) ∈ C, s, j = 1, . . . , mr . Then

(Tr(g))hk =
m∑

j,l=1

αr
hj (g)αr

kl(g)〈ψr,j , Pr(−g)H(g)Pr(g)ψr,l〉, h, k = 1, . . . , m. (3.15)

Consider now the mr × mr matrix Br(g) = (Br
jl(g))j,l=1,...,m, where

Br
jl(g) = 〈ψr,j , Pr(−g)H(g)Pr(g)ψr,l〉, j, l = 1, . . . , mr . (3.16)

Its self-adjointness entails the self-adjointness of Tr(g). We have indeed the following lemma.

Lemma 3.4. Let Br
jl(g) = Br

lj (g),∀ j, l = 1, . . . , mr . Then,

(Tr(g))hk = (Tr(g))kh, h, k = 1, . . . , mr .

Proof. Since Br
jl(g) = Br

lj (g),∀ j, l we can write

(Tr,(g))kh =
mr∑

p,s=1

αr
kp(g)αr

hs(g)Br
ps(g) =

mr∑
p,s=1

αr
kp(g)αr

hs(g)Br
sp(g)

=
mr∑

j,l=1

αr
hj (g)αr

kl(g)Br
jl(g) = (Tr(g))hk. (3.17)

and this proves the assertion. �

In other words the self-adjointness of Tr(g), and thus the reality of the eigenvalues �r,s(g)

for |g| < ḡ(r), follows from the self-adjointness of Br(g) which will be proved by the
construction of the Rayleigh–Schödinger perturbation expansion (RSPE) for the operator
Pr(−g)H(g)Pr(g), which we now briefly recall, following (section 2.2.7 of [31]; here
T (1) = V = iW,T (ν) = 0, , ν � 2,D = 0).

(1) The geometric expansion in powers of g of the resolvent

Rg(z) = (z − H(g))−1 = (z − H0 − gV )−1 = R0(z)

∞∑
n=0

(−g)n[V R0(z)]
n

is norm convergent for |g| suitably small. Insertion in (3.12) yields the expansion for
P(g):

Pr(g) =
∞∑

n=0

gnP (n)
r , P (0)

r = Pr(0) := Pr (3.18)

P (n)
r = (−1)n+1

2πi

∮
r

R0(z)[V R0(z)]
n dz, n � 1, (3.19)

whence

Pr(−g)H(g)Pr(g) =
∞∑

n=0

gnT̂ (n)
r , T̂ (0)

r = H0Pr, (3.20)
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where

T̂ (n)
r =

n∑
p=0

(−1)p
[
P (p)

r H0P
(n−p)
r + P (p−1)

r V P (n−p)
r

]
, n � 1, P (−1)

r = 0.

(3.21)

and

P (n)
r = (−1)n+1

∑
k1+...+kn+1=n

kj �0

S(k1)
r V S(k2)

r V . . . V S(kn)
r V S(kn+1)

r . (3.22)

Here

S(0)
r = −Pr ; Sr = −

∑
j �=r

Pj /(�j − �r); S(k)
r = (Sr)

k, ∀ k = 1, 2, . . . , (3.23)

where Pj is the projection corresponding to the eigenvalue �j of H0.
(2) The series (3.18), (3.20) are norm convergent for |g| < dr

2‖W‖∞
, where dr is the distance

of � = �r from the rest of the spectrum of H0. Hence under the present assumptions the
convergence takes place a fortiori for

|g| < ρ ρ := δ

‖W‖∞
. (3.24)

(3) The projection operator Pr(g) is holomorphic for |g| < ρ. This entails that its dimension
is constant throughout the disk. Therefore H(g) admits exactly mr eigenvalues �r,s

(counting multiplicities) inside r for |g| < ρ.
(4) Hence, for |g| < ρ we can write

Br(g) =
∞∑

n=0

gnG(n)
r ,

(
G(n)

r

)
j l

:= 〈
ψr,j , T̂

(n)
r ψr,l

〉
, j, l = 1, . . . , mr . (3.25)

We can now formulate the first step:

Proposition 3.5. Let �r , r = 1, 2, . . . be an eigenvalue of H0. Then the mr eigenvalues
(counting multiplicity) �r,s of H(g) existing for |g| < ρ, and converging to �r as g → 0, are
real for |g| < ḡ(r), g ∈ R.

Proof. We drop the index r because the argument is r independent, i.e. we consider the
expansion near the unperturbed eigenvalue � := �r . Accordingly, we denote by ψs := ψr,s

the corresponding eigenvectors. Let us first consider the case of � even. It is enough to prove
that Gn = 0 if n is odd and that Gn is self-adjoint (in fact, real symmetric) when n is even.
These assertions will be proved in lemmas 3.7 and 3.9, respectively, which in turn require an
auxiliary statement. �

Definition 3.6. The product


(k1, . . . , kn+1) := S(k1)V S(k2)V . . . V S(kn)V S(kn+1) (3.26)

containing precisely n factors V and n + 1 factors S(j), j � 0, is called string of length n.

Then from (3.21), (3.22) we get

(G(n))qs = (−1)n
n∑

p=0

(−1)p
[(
G(n)

1,p

)
qs

− (
G(n)

2,p

)
qs

]
, (3.27)
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where

(
G(n)

1,p

)
qs

=
〈
ψq,

∑
k1+...+kp+1=p

kl�0


(k1, . . . , kp+1)H0

∑
h1+...+hn−p+1
=n−p;hl�0


(h1, . . . , hn−p+1)ψs

〉
(3.28)

(
G(n)

2,p

)
qs

=
〈
ψq,

∑
k1+...+kp

=p−1;kl�0


(k1, . . . , kp)V
∑

h1+...+hn−p+1
=n−p;hl�0


(h1, . . . , hn−p+1)ψs

〉
. (3.29)

Now S(k) is self-adjoint for all k, and V = iW with W(x) ∈ R. Therefore,(
G(n)

1,p

)
qs

= (−1)p

〈 ∑
k1+...+kp+1=p;kl�0

h1+...+hn−p+1=n−p;hl�0


(kp+1, . . . , k1)ψq,H0
(h1, . . . , hn−p+1)ψs

〉

(
G(n)

2,p

)
qs

= (−1)p−1

〈 ∑
k1+...+kp=p−1;kl�0

h1+...+hn−p+1=n−p;hl�0


(kp, . . . , k1)ψq, V 
(h1, . . . , hn−p+1)ψs

〉
.

Since S(k) ⊥ P, k � 1, in both scalar products (3.28) and (3.29) all terms with k1 �= 0 or
hn−p+1 �= 0 vanish. Hence,

(
G(n)

1,p

)
qs

= (−1)p

〈 ∑
k1+...+kp=p

h1+...+hn−p=n−p
kl�0,hl�0


(kp, . . . , k1)V ψq,H0
(h1, . . . , hn−p)V ψs

〉
(3.30)

(
G(n)

1,p

)
qs

= (−1)p−1

〈 ∑
k1+...+kp−1=p−1
h1+...+hn−p=n−p

kl�0,hl�0


(kp−1, . . . , k1)V ψq, V 
(h1, . . . , hn−p)V ψs

〉
. (3.31)

We now have

Lemma 3.7. Let n be odd, and 0 � p � n. Then, ∀ k1, . . . , kp � 0,∀ h1, . . . , hn−p �
0,∀ q, s = 1, . . . , m,

〈
(kp, . . . , k1)V ψq,H0
(h1, . . . , hn−p)V ψs〉 = 0 (3.32)

〈
(kp−1, . . . , k1)V ψq, V 
(h1, . . . , hn−p)V ψs〉 = 0. (3.33)

Proof. Let us write explicitly (3.32), (3.33):

〈S(kp)V S(kp−1)V . . . V S(k1)V ψq,H0S
(h1)V S(h2)V . . . V S(hn−p)V ψs〉 = 0 (3.34)

〈S(kp−1)V S(kp−2)V . . . V S(k1)V ψq, V S(h1)V S(h2)V . . . V S(hn−p)V ψs〉 = 0. (3.35)

Let us now further simplify the notation as follows. We set

S+ := −
∑

j �=r;�j even

Pj

�j − �
; S− = −

∑
j �=r;�j odd

Pj

�j − �
. (3.36)
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Both series are convergent because |(�j − �)| > δ and
∑

j �=r; Pj is convergent. Hence
S = S+ ⊕ S− and for k �= 0 we have

Sk = Sk
+ ⊕ Sk

− = (−1)k
∑

j �=r;�j even

Pj

(�j − �)k
+ (−1)k

∑
j �=r;�j odd

Pj

(�j − �)k
. (3.37)

Finally we set S
(0)
+ := S0

+ := −P . Now, the multiplication by V changes the parity of a
function, and ψj ,ψl are even. This entails that in both scalar products above S(k1) can be

replaced by S
(k1)− , S(k2) by S

(k2)
+ and so on. The general rule is S(kj ) can be replaced by S

kj

− ( by

S
kj

+ ) if and only if j is odd (j is even, respectively). Similarly for the S(hj ). Consider first the
scalar product in (3.34). According to the general rule S

(kp)

± coincides with S
(kp)
+ if p is even

and with S
(kp)

− if p is odd. Similarly for S
(hn−p)

± . If n is odd p and n − p have opposite parity
and since H0 does not change the parity of a function the scalar product is zero. A similar
argument shows that also the scalar product (3.35) is zero if n is odd. Indeed the function
in the left-hand side has the same parity of the number p − 1, whereas the function of the
right-hand side has the same parity of n − p + 1, and if n is odd p − 1 and n − p + 1 have
opposite parity. This proves the assertion. �

Lemma 3.8. Let n be odd. Then G(n) = 0.

Proof. It is an immediate consequence of lemma 3.7 on account of (3.27), (3.30), (3.31). �

Lemma 3.9. Let n be even. Then (G(n))qs = (G(n))qs for all q, s = 1, . . . , m.

Proof. Once more by (3.27), (3.30), (3.31) we can write for all n (replacing of course V by
iW in the definition (3.26), and denoting 
′ the resulting string)

(G(n))qs = (i)n
n∑

p=0

 ∑
k1+...+kp=p;kj �0

h1+...+hn−p=n−p;hj �0

(−1)p〈
′(k1, . . . , kp)Wψq,H0

′(h1, . . . , hn−p)Wψs〉

−
∑

k1+...+kp−1=p−1;kj �0
h1+...+hn−p=n−p;hj �0

(−1)p−1〈
′(k1, . . . , kp−1)Wψq,W
′(h1, . . . , hn−p)Wψs〉



(i)n
n∑

p=0

 ∑
k1+...+kn−p=n−p;

h1+...+hp=p;hj �0,kj �0

(−1)n−p〈H0

′(k1, . . . , kn−p)Wψq,


′(h1, . . . , hp)Wψs〉

−
∑

k1+...+kn−p=n−p;kj �0
h1+...+hp−1=p−1;hj �0

(−1)n−p+1〈W
′(k1, . . . , kn−p)Wψq,

′(h1), . . . , hp−1)Wψs〉


= (G(n))qs . (3.38)

To obtain the second equality in (3.38) we have used the self-adjointness of H0 and W and
we have renamed the indices, exchanging p and n − p in the first scalar product, and p − 1
and n − p in the second scalar product. Finally, to obtain the last equality in (3.38) note that
(−1)p = (−1)n−p since n is even. �
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Remark

(1) It is worth noticing that if the ψs, s = 1, . . . , m, are chosen to be real valued then
(G(n))qs ∈ R,∀ j, l, because W is also real valued and the operators S(k) map real-valued
functions into real-valued functions.

(2) The argument yielding the real nature of the perturbation expansion is independent of its
convergence, namely it holds for all odd potentials V for which the perturbation expansion
exists to all orders. In particular, it holds when V is any odd polynomial, i.e. for any odd
anharmonic oscillators in any dimension d.

We now proceed to prove that the eigenvalues �r,s(g) are real ∀ g ∈ R, |g| < ρ.

Proposition 3.10. The eigenvalues �r,s, r = 1, 2, . . . , s = 1, . . . , mr are holomorphic for
|g| < ρ and real for g ∈ R, |g| < ρ.

Proof. The vectors Ur(g)Prψr,k = Ur(g)ψr,k : k = 1, . . . , mr represent a basis of Mr (g) for
all |g| < ρ (section 2.4.2 of [31]). Here the similarity operator Ur(g)Pr is recursively defined
in the following way:

Ur(g)Pr = Pr +
∞∑

k=1

U(k)
r gk, kU(k)

r = kP (k)
r + (k − 1)P (k−1)

r U(1)
r + · · ·P (1)

r U(k−1)
r .

(3.39)

We denote χr,s(g) : s = 1, . . . , mr the orthonormal basis in Mr (g) obtained from
Ur(g)ψr,s, s = 1, . . . , mr through the Gram-Schmidt orthogonalization procedure. Then
the eigenvalues �r,s(g), s = 1, . . . , mr , are the eigenvalues of the m × m matrix Xr(g) given
by

(Xr(g))hk := 〈χr,h(g),H(g)P (g)χr,k(g)〉
= 〈χr,h(g),H(g)χr,k(g)〉, h, k = 1, . . . , mr (3.40)

because P(g)χr,h(g) = χr,h, h = 1, . . . , mr . For |g| < ḡ(r) the orthonormal vectors
χr,h(g): h = 1, . . . , mr are linear combinations of the orthonormal vectors φr,h(g) : h =
1, . . . , mr defined above. Since Xr(g) and Tr(g) represent the same operator on two different
orthonormal bases, if either one is self-adjoint the second must enjoy the same property.
Hence the matrix (Xr(g))hk is self-adjoint, |g| < ḡ(r), g ∈ R. Expand now (Xr(g))hk in
power series:

(Xr(g))hk =
∞∑

m=0

(θr,m)hkg
m.

The series converges for |g| < ρ. It follows indeed by the standard Gram-Schmidt procedure
(we omit the details) that it can be written as the quotient of two functions of g involving only
linear combinations of scalar products of the operators Pr(g) on vectors independent of g; the
denominator never vanishes for |g| < ρ by construction, on account of the linear independence
of the vectors Ur(g)ψr,s, s = 1, . . . , mr when |g| < ρ. Now it necessarily follows from the
self-adjointness of (Xr(g))hk , valid for |g| < ḡ(r) that (θr,m)hk = (θr,m)kh,m = 0, 1, . . ..
Hence the matrix Xr(g) is self-adjoint for |g| < ρ, g ∈ R, and thus the eigenvalues �r,s are
real in the same domain. This proves the assertion. �

Proof of theorem 3.2. We have seen that the RSPE associated with the �r -group of eigenvalues
�r,s(g), s = 1, . . . , mr , of H(g) which converge to �r as g → 0, have radius of convergence no
smaller than ρ. Hence, ∀ g ∈ R such that |g| < ρ,H(g) admits a sequence of real eigenvalues



PT symmetric non-self-adjoint operators with a real discrete spectrum 10167

�r,s(g), s = 1, . . . , mr, r ∈ N. We want to prove that for |g| < ρ, g ∈ R,H(g) has no other
eigenvalues. Thus all its eigenvalues are real. To this end, for any r ∈ N let Qr denote the
square centered at �r with side 2δ. Then if g ∈ R, |g| < ρ, and �(g) is an eigenvalue of H(g):

�(g) ∈
⋃
r∈N

Qr .

In fact, for any z /∈ ∪r∈NQr we have

‖gV R0(z)‖ � |g|‖W‖∞‖R0(z)‖ < ρ‖W‖∞[dist(z, σ (H0))]
−1 � ρ‖W‖∞

δ
= 1 (3.41)

where R0(z) := (H0 − z)−1. Thus, z ∈ ρ(H(g)) and

R(g, z) := (H(g) − z)−1 = R0(z)[1 + gV R0(z)]
−1.

Now let g0 ∈ R be fixed with |g| < ρ. Without loss of generality we assume that g0 > 0.
Let �(g0) be a given eigenvalue of H(g0). Then �(g0) must be contained in the interior (and
not on the boundary) of Qn0 for some n0 ∈ N. Moreover if m0 is the multiplicity of �(g0),
for g close to g0 there are m0 eigenvalues �(α)(g), α = 1. . . . , m0, of H(g) which converge to
�(g0) as g → g0 and each function �(α)(g) represents a branch of one or several holomorphic
functions which have at most algebraic singularities at g = g0 (see [theorem 7.1.8 of [31]).
Let us now follow one of such branches �(α)(g) for 0 < g < g0, suppressing the index α from
now on. First of all we notice that, by continuity, �(g) cannot go out of Qn0 for g close to
g0. Moreover, if we denote 2t the boundary of the square centered at �n0 with side 2t , for
0 < t � 1, we have, for z ∈ 2t and 0 < g � g0,

‖gV R0(z)‖ � g[dist(z, σ (H0))]
−1 � g/t. (3.42)

Then t > g implies z /∈ σ(H(g)), i.e. if z ∈ σ(H(g)) ∩ 2t then t � g < g0 < 1. Hence
we observe that as g → g−

0 , �(g) is contained in the square centered at �n0 and side 2g.
Suppose that the holomorphic function �(g) is defined on the interval ]g1, g0] with g1 > 0.
We will show that it can be continued up to g = 0, and in fact up to g = −1. From what
has been established so far the function �(g) is bounded as g → g+

1 . Thus, by the well
known properties on the stability of the eigenvalues of the analytic families of operators, �(g)

must converge to an eigenvalue �(g1) of H(g1) as g → g+
1 and �(g1) is contained in the

square centered at �n0 and side 2g1. Repeating the argument starting now from �(g1), we can
continue �(g) to a holomorphic function on an interval ]g2, g1], which has at most an algebraic
singularity at g = g2. We build in this way a sequence g1 > g2 > . . . > gn > . . . which
can accumulate only at g = −1. In particular the function �(g) is piecewise holomorphic
on ] − 1, 1]. But while passing through g = 0, �(g) coincides with one of the eigenvalues
�r,s(g), s = 1, . . . , mr , generated by an unperturbed eigenvalue �r of H0 (namely �n0 ), which
represent mr real analytic functions defined for g ∈] − 1, 1]. Thus, �(g0) arises from one of
these functions and is therefore real. This concludes the proof of the theorem. �

4. Perturbation of resonant harmonic oscillators

Consider again the d-dimensional harmonic oscillator

H0 = 1

2

d∑
k=1

[
− d2

dx2
k

+ ω2
kx

2
k

]
, (4.1)

where now the frequencies ωk > 0 : k = 1, . . . , d may be different. Theorem 3.3 will be a
consequence of the following proposition.
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Proposition 4.1. The operator (4.1) fulfils assumption (2) of theorem 3.2 if and only if the
following condition on the frequencies holds:

(1) ∀ k ∈ Z
d \ {0} such that the components ki : i = 1, . . . , d have no common divisor, and

ω1k1 + · · · + ωdkd = 0, the number O(k) of ki odd is even.

Proof. We first prove the sufficiency part. Let therefore (A) be fulfilled. First recall the obvious
fact that the rational dependence of the frequency entails the degeneracy of any eigenvalue of
(4.1). In order to show that each eigenvalue

�n1,...,nd
= ω1n1 + · · · + ωdnd + 1

2 (ω1 + · · ·ωd)

of H0 has a definite parity, consider a corresponding eigenfunction

�n1,...,nd
(x1, . . . , xd) =

d∏
s=1

ψns
(xs).

Now ψns
(x) is even or odd according to the parity of ns , and therefore � will be even if and only

if the number of odd ns is even. Since � is degenerate, there exist (l1, . . . , ld) �= (n1, . . . , nd)

such that

ω1n1 + · · · + ωdnd = ω1l1 + · · · + ωdld 	⇒ 〈ω, k〉 = 0, k := (n1 − l1, . . . , nd − ld)

and hence the eigenfunction

�l1,...,ld (x1, . . . , xd) =
d∏

s=1

ψls (xs)

corresponds to the same eigenvalue. The eigenfunctions �n1,...,nd
and �l1,...,ld have one and

the same parity if and only if the number of the odd differences ki is even: in fact, an even
difference ki = ni − li does not change the relative parity, while an odd difference does.
Let us show that if assumption (A) holds the number of odd differences is even. The case
in which ki : i = 1, . . . , d have no common divisor is the assumption itself. Let therefore
ki : i = 1, . . . , d have a common divisor. If a common divisor is 2, ki is even for any i. Hence
there are no odd differences. If 2 is not a common divisor, there will be an odd common
divisor, denoted b, such that ki = bk′

i , where the numbers k′
i have no common divisor. Now

〈k′, ω〉 = 〈k, ω〉/b = 0. Hence by the assumptions O(k′) is even. Since the multiplication by
the odd number b does not change the parity of the k′

i , the same conclusion applies also to the
numbers ki . Thus the total number of odd differences does not change after multiplication by
b: O(k) = O(k′) is even. Conversely, let us assume that assumption (A) is violated. Therefore
there exists k ∈ Z

d \{0} such that the numbers ki have no common divisor, 〈k, ω〉 = 0 and
O(k) is odd. Consider again the eigenfunctions �n1,...,nd

(x1, . . . , xd) and �l1,...,ld (x1, . . . , xd)

corresponding to the same eigenvalue �, with ki = ni − li as above. By construction, the two
eigenfunctions have opposite parity, and this concludes the proof of the proposition. �

Proof of theorem 3.3. Let us first prove that assumption (1.1) of theorem 3.2 is fulfilled. Let
�l = �l1,...,ld and �n = �n1,...,nd

denote different eigenvalues. Then, by assumption

|�n − �l| = ω

∣∣∣∣(n1 − l1)
p1

q1
+ · · · + (nd − ld)

pd

qd

∣∣∣∣
= ω

q1 · · · qd

|(n1 − l1)p1q2 · · · qd + · · · + (nd − ld)pdq1 · · · qd−1|

� ω

q1 · · · qd

:= δ > 0.

Since this lower bound does not depend on the multi-indices (n, l) the assertion is proved.
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Let us now check Assertion (i), namely that if the frequencies have the form ωk = ωpk/qk

with pk and pk odd then assumption (1.2) of theorem (3.2) holds; namely, all eigenvalues of
(4.1) have a definite parity. By proposition 4.2, it is enough to prove that assumption (A)
is satisfied. Let indeed (k1, . . . , kd) ∈ Z

d \{0} be without common divisor and such that
〈ω, k〉 = 0. Then

p1

q1
k1 + · · · +

pd

qd

kd = 1

q1 · · · qd

(p1q2 · · · qdk1 + · · · + pdq1 · · · qd−1kd)

:= 1

q1 · · · qd

(D1k1 + · · · + Ddkd) = 0

Now the integers Dk : k = 1, . . . , d are odd; hence the above sum must have an even number
of terms. The odd terms are those, and only those, containing an odd ki ; therefore the number
of odd ki must be even. Then the result follows by the above proposition.

Consider now assertion (ii) of theorem 3.3. The only thing left to prove is that the validity
of assumption (A) entails that ω1

ω2
= d1

d2
where d1 and d2 are odd. Suppose indeed ω1

ω2
= k2

k1

where k1 is odd and k2 even, or vice versa. Then ω1k1 − ω2k2 = 0. However this contradicts
assumption (A) which states that the number O(k) of odd ki must be even. This concludes
the proof of theorem 3.3. �

Corollary 4.2. Under the conditions of theorem 3.3 on H0, assume furthermore that the matrix
〈ψr,Wψs〉 : r, s = 1, . . . , m0 is not identically zero for at least one eigenvalue �0 of H0 of
multiplicity m0 > 1. Then for |g| < δ

‖W‖∞
,H(g) has real eigenvalues if and only if pk and qk

are both odd, ∀ k = 1, 2.

Proof. The sufficient part is a particular case of theorem 3.3. As for the necessity, under the
present conditions the eigenfunctions have opposite parity. Therefore we can directly apply
the argument of [15] and conclude that if p is even and q is odd or vice versa, H(g) has a pair
of complex conjugate eigenvalues near �0 for g ∈ R suitably small. �
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